
Who is in Control?
(Enhancing your Simulator using an Extension Language)

Sani R. Nassif
IBM Research - Austin
nassif@us.ibm.com

Hessian-Based Rotational Bounding
for Newton Methods (frustratingly effective!)

Sani R. Nassif
IBM Research - Austin
nassif@us.ibm.com

Nassif. NACDM workshop, 2004 3

Environment

Semiconductor technology is experiencing an
“analysis discontinuity” at the 65 and 45nm
nodes.
 2nd and 3rd order effects are starting to become

dominant and requiring detailed analysis.
 The slowdown in performance gain per node is

fueling a desire to better understand (and reduce)
existing design margins.

 Slowdown also leading to exploration of alternative
circuit topologies and design techniques.

 Designs continue to grow.

Increasing need for analysis & modeling.

Nassif. NACDM workshop, 2004 4

Current Simulators

Usually do something like:
 Start and read initialization file.
 Read input file.
 Setup and check simulation problem.
 Call solver(s) to perform analysis.
 Collect output.
 Do some post-processing on the output.
 Dump outputs into a file.
 Exit.

Simple to code, focuses attention (correctly)
on the analysis rather than interfaces.

Maybe not so
correctly?

Read

Solve

input

output

Write

Nassif. NACDM workshop, 2004 5

Simulation: Analysis or Design

Focus on algorithms sometimes detracts from
understanding simulator application.
 E.g. focus on large scale simulation ignores 99% of

total CPU cycles spent in circuit simulators!

Developers seldom think of the efficiency of
the simulator as it is applied by the designer!
 In fact, developers are seldom aware of the many

ways in which simulators get applied.
 Until a problem happens…

The fact is that a simulator is a design tool,
not just an analysis tool.

Nassif. NACDM workshop, 2004 6

Impediments

Using a traditional simulator to perform
various design tasks presents problems.
Examples: sizing a gate to a specific load, or
modeling the setup/hold time of latches.

Two possible outcomes:
 Simulator gets enhanced with a new algorithm to

solve the specific problem, making it more complex.
 Vast amounts of Perl, Python, Awk, and shell

scripts get written as wrappers around the
simulator to create a “design application” that the
design community can use.

Nassif. NACDM workshop, 2004 7

Read

Solve + XXXX

input

output

Write

Read

Solve

input

output

Write

G
lu

e
Co

de
…

Outcomes…

Read

Solve + YYYY

input

output

Write

Proliferation of
simulators with

special purpose code.

Messy unsupportable
inefficient glue code.
Solving problem using
simplistic “numerical

recipes” style algorithms.

Nassif. NACDM workshop, 2004 8

There is an Alternative

Unwrap the tool into individual components.
Expose each component to an extension
language (EL).
Use the EL to script the operation of simulator.

Many extension languages are available: Tcl,
Python, Perl, Elk, Lua, Guile…
 Even meta-EL tools also exist (SWIG).

Tcl has taken hold in the design automation
world (one of the first, had a GUI, easy, simple…).

Nassif. NACDM workshop, 2004 9

How Tcl Works
Application registers commands with the interpreter
which are treated semantically as built-ins.

Tcl Interpreter

commands

Parse

Dispatch
if

read

file

for

Built-in Commands

Application
(Simulator)

resistor

nodes

dcanal

Huge library of

extensions

readily available.

Nassif. NACDM workshop, 2004 10

Tcl/Simulator Interface Level

Two extremes:
Export the main() routine and use Tcl to
pass command line options.
 No loss in efficiency, No gain in flexibility.

Explode all data structures and algorithms in
the simulator.
 Potential loss in efficiency, much gain in flexibility.
 (can you imagine LU factorization in an EL!)

There is some appropriate middle ground that
defines a level where the efficiency/flexibility
tradeoff is optimal for a given application.

Nassif. NACDM workshop, 2004 11

A Practical Example: LEADER

A Spice-like circuit simulator, under active
development at IBM for last 4 years.
Traditional (mostly) algorithms, solvers, models…
 A simplified version, dubbed “the simulation

substrate” exists with the intent that it be shared.
 Open source in industry is difficult!

Techniques also applied in 3 other simulators!

Completely Tcl-based.
 Netlist, command and API levels.

Simulation Substrate

 Written in C++

 31578 lines of solver code
via abstract interfaces
(sparse1.3, slap, …)

 4510 lines of simulator
code (simple models only)

Nassif. NACDM workshop, 2004 12

Netlist as a Program

Hierarchy and parameterization are exactly
isomorphic to traditional procedural
programming constructs!

global L

set L 0.065

proc inverter { name input output vdd {wn 1} {wp 1.4} } {

global L

nmos $name.N –d $output –g $input –s G –w $wn –l $L

pmos $name.P –d $output –g $input –s $vdd –w $wp –l $L

}

vsrc vdd –p vdd –n G –v 0.9

for {set n 0} {$n < 9} {incr n} {

inverter INV.$n N_$n N_[expr ($n+1)%9] vdd

}

global L

set L 0.065

proc inverter { name input output vdd {wn 1} {wp 1.4} } {

global L

nmos $name.N –d $output –g $input –s G –w $wn –l $L

pmos $name.P –d $output –g $input –s $vdd –w $wp –l $L

}

vsrc vdd –p vdd –n G –v 0.9

for {set n 0} {$n < 9} {incr n} {

inverter INV.$n N_$n N_[expr ($n+1)%9] vdd

}

Hierarchy
implemented using
simple name
concatenation

Parameterization
with defaults using
procedure arguments

WARNING…

Source Code

Ahead

Nassif. NACDM workshop, 2004 13

More on Parameterization

Tcl allows extension language variables and
internal parameters to be automatically
synchronized.

global R

vsrc vdd –p vdd –n G –v 0.9

res R1 –p vdd –n N_a –r @R

Res R2 –p N_a –n G –r 2.0

Set pg [open “|xgraph –bb –tk –bg white” w]

for {set R 0.1} {$R < 10} {set R [expr $R*1.1]} {

dcsolve

nodes X

puts $pg [format “%6.2f %6.2f” $R $X(N_a)]

}

Close $pg

global R

vsrc vdd –p vdd –n G –v 0.9

res R1 –p vdd –n N_a –r @R

Res R2 –p N_a –n G –r 2.0

Set pg [open “|xgraph –bb –tk –bg white” w]

for {set R 0.1} {$R < 10} {set R [expr $R*1.1]} {

dcsolve

nodes X

puts $pg [format “%6.2f %6.2f” $R $X(N_a)]

}

Close $pg

Tcl_LinkVar used
to link Tcl and C
variables…

Simple analysis
commands Results returned in

native language
data structures

Availability of native
file I/O makes tool
interactions easy!

Nassif. NACDM workshop, 2004 14

Stimulus Parameterization

Circuit stimulus can be defined procedurally as
well! Very difficult to do in current simulators.
 Example: stimulus from files or pipes…

proc sinsq_input { t } {

set PI2 1.57079632

if {$t < 1} { return 0.0 }

if {$t > 2} { return 1.0 }

if {$t < 2} { return [expr pow(sin($PI2*(t-1)),2)] }

}

proc inverter { name input output vdd {wn 1} {wp 1.4} } {…}

vsrc vdd –p vdd –n G –v 0.9

vinp vip –p vip –n G –proc sinsq_input

inverter X1 vip N_b vdd

tranal –step 0.01 –stop 3.0

proc sinsq_input { t } {

set PI2 1.57079632

if {$t < 1} { return 0.0 }

if {$t > 2} { return 1.0 }

if {$t < 2} { return [expr pow(sin($PI2*(t-1)),2)] }

}

proc inverter { name input output vdd {wn 1} {wp 1.4} } {…}

vsrc vdd –p vdd –n G –v 0.9

vinp vip –p vip –n G –proc sinsq_input

inverter X1 vip N_b vdd

tranal –step 0.01 –stop 3.0

Tcl procedure used
to define input
waveform…

Simple analysis
commands

Nassif. NACDM workshop, 2004 15

Dynamic Model Support

Models can be defined via EL procedures.
 Automatic differentiation and pre-parsing can

reduce the cost of interpretation.

proc nonlinear_resistor { a b r0 r1 r2 } {

set va [get_voltage $a]; set vb [get_voltage $b];

gcalc {

indep va vb;

$i = $r0 + $r1*($va-$vb) + $r2*($va-$vb)^2;

}

return [list $i [deriv i va] [deriv i vb]]

}

two_term -# $A $B –proc nonlinear_resistor –pars {0 0.1 0.2}

proc nonlinear_resistor { a b r0 r1 r2 } {

set va [get_voltage $a]; set vb [get_voltage $b];

gcalc {

indep va vb;

$i = $r0 + $r1*($va-$vb) + $r2*($va-$vb)^2;

}

return [list $i [deriv i va] [deriv i vb]]

}

two_term -# $A $B –proc nonlinear_resistor –pars {0 0.1 0.2}

Tcl procedure used
to define the non-
linearity…Built in extension

does pre-parsing
and differentiation

Generic 2-terminal
elements with
parameters

Nassif. NACDM workshop, 2004 16

Algorithm Control

Having simple default behavior for core
algorithms does not necessarily imply that
flexibility is lost.

proc dcsolve { {strategy “default”} } {

switch $strategy {

“default”

if {[_dcsolve –m NEWTON –b 1]} { dcsolve “robust” }

“robust”

_dcsolve –m HOMOTOPY

“silly” {

for {set g 1e-3} {$g > 1e-12} {set g [expr $g*0.1]} {

option gmin $g; dcsolve –m NEWTON

}

}

proc dcsolve { {strategy “default”} } {

switch $strategy {

“default”

if {[_dcsolve –m NEWTON –b 1]} { dcsolve “robust” }

“robust”

_dcsolve –m HOMOTOPY

“silly” {

for {set g 1e-3} {$g > 1e-12} {set g [expr $g*0.1]} {

option gmin $g; dcsolve –m NEWTON

}

}

Simple commands
can hide complex
adaptive behavior

And shield the user
from the internal
options & details

Some algorithms can
even be implemented
at the EL level!

Nassif. NACDM workshop, 2004 17

Alternative Forms of Netlists

EL allows us to re-target simulator to a
completely different paradigm (e.g. brain simulation?).
 Because many many problems can look like ODEs.

proc neuron { A B C output {alpha 1.4} } {

csrc -# $output G –expr “max(V(A),V(B),V(C),alpha)”

cap -# $output G 1e-10

}

proc stimulus { A } {

isrc -# $A G –pwl {0 0 1e-6 0 2e-6 1e-3 3e-6 0}

}

proc simulate { interval } {

tranal [expr $interval/1000] $interval

}

...

proc neuron { A B C output {alpha 1.4} } {

csrc -# $output G –expr “max(V(A),V(B),V(C),alpha)”

cap -# $output G 1e-10

}

proc stimulus { A } {

isrc -# $A G –pwl {0 0 1e-6 0 2e-6 1e-3 3e-6 0}

}

proc simulate { interval } {

tranal [expr $interval/1000] $interval

}

...

Procedures can map
“other” concepts onto
circuit forms

Same can be done
for simulation
commands

Nassif. NACDM workshop, 2004 18

And Finally, GUI Appeal

Interface to a power grid simulator…
 (really just a special purpose circuit simulator!)

Special purpose
widgets added to Tcl
for domain-specific

visualization!

Nassif. NACDM workshop, 2004 19

Low Hanging Fruit…

An EL-enabled simulator is, by definition,
interactive.
Thoughtful implementation of internal
representation can also make it incremental.

Obvious example: integrate simulator with
schematic entry!
 Far more productive than current batch-style

interfaces that exist in commercial design
environments.

Nassif. NACDM workshop, 2004 20

From Analysis to Design

Circuit design often requires meta-analysis and
optimization.

Meta-analysis: the composition of multiple
simulation results to resolve a design
performance question.
 Example: determination of latch setup/hold times

(one of the core tasks of “library characterization”).

Optimization: the methodical modification of
parameters to meet performance targets.
 Example: sizing a keeper to reduce noise.

Nassif. NACDM workshop, 2004 21

Example: Latch Characterization

Latch: state holding element, core of
sequential (clocked) digital systems.

Latch

Data

Clock

Output

Time

Clock

Data

Output

 Data gets copied to output when clock transitions.

 BUT… Data must be stable Tsetup before clock arrives!

Tsetup

Nassif. NACDM workshop, 2004 22

Latch Behavior vs. Tsetup

OK

Not OK
Data

Changing Tsetup

Clock

Tsetup

Output

Nassif. NACDM workshop, 2004 23

Meta-Analysis Example

Circuit, performance,
and simulation scripts
can be encapsulated.

Similar algorithms can
be abstracted.

Zero Finding

Binary Search

Golden Section
Latch Circuit

Definition

Performance
Definition

Simulation
Setup

Nassif. NACDM workshop, 2004 24

Meta-Analysis Using an EL

Power of a complete interactive prototyping
environment makes creating meta-analyses
very easy.
A modest amount of discipline results in meta-
analysis code that is re-usable.

Availability of object oriented extensions to Tcl
(incrTcl) helps add the discipline needed when
“wrapping” meta-analyses.
 Classes also allow for better data hiding when

needed.

Nassif. NACDM workshop, 2004 25

More Complex Analysis

Once circuit & performance are parameterized,
complex interactions can be handled via
standard packages.

A few key “objects” serve to mediate.
 Implemented as Tcl extensions.

Parameter: name, value, range, distribution…

Performance: name, transform…

Nassif. NACDM workshop, 2004 26

Example: Sampling

param P { R1 3 2 4 } { R2 7 5 10 }

set NS 100

sample $NS P DATA

vsrc vdd –p vdd –n G –v 1.0

res R1 –p vdd –n A –r @R1

res R2 –p A –n G –r @R2

for {set i 0} {$i < $NS} {incr i} {

set R1 $DATA($i,0)

set R2 $DATA($i,1)

dcsolve

nodes X

puts [format “R1=%.3g R2=%.3g V(A)=%.3g” $R1 $R2 $X(A)]

}

param P { R1 3 2 4 } { R2 7 5 10 }

set NS 100

sample $NS P DATA

vsrc vdd –p vdd –n G –v 1.0

res R1 –p vdd –n A –r @R1

res R2 –p A –n G –r @R2

for {set i 0} {$i < $NS} {incr i} {

set R1 $DATA($i,0)

set R2 $DATA($i,1)

dcsolve

nodes X

puts [format “R1=%.3g R2=%.3g V(A)=%.3g” $R1 $R2 $X(A)]

}

Create parameters
and MonteCarlo
sample

Create a simple
parameterized circuit

During simulation loop
use samples to re-
parameterize circuit

Nassif. NACDM workshop, 2004 27

And Finally, Optimization

Numerous optimization packages available.
Most expect the objective function to be
specified as a callable object.
EL can mediate…
 Implement standardized objective function in any

language compatible with the optimizer.
 Have the standardized objective function call the

name of a Tcl procedure.
 Return the result of the Tcl procedure.

Reality Check… often optimization is not what we want and “improvement”
suffices. The presence of process variability and various forms of model
inaccuracy mean that improvement is often more realistically achievable!

Nassif. NACDM workshop, 2004 28

EL Interface to Optimizer

Optimizer

Parameter

Definitions

Optimization

Algorithm

Tcl Wrapper

for Optimizer

Problem Definition

Objective Function

Advanced features like constraints,

 analytical sensitivities, stopping

criteria & error handling are handled

in a similar manner to parameters

Multiple optimization algorithms

can be implemented & wrapped

to allow for easy selection

Nassif. NACDM workshop, 2004 29

Example: Optimization

Param P { R1 3 2 4 } { R2 7 5 10 }

vsrc vdd –p vdd –n G –v 1.0

res R1 –p vdd –n A –r @R1

res R2 –p A –n G –r @R2

proc func { X } {

global R1 R2

set R1 $X(0); set R2 $X(1)

dcanal

nodes Y

return [expr pow($Y(A)-0.5,2)]

}

sqp P func

puts [format “optimum at R1=%.3f R2=%.3f” $P(R1) $P(R2)]

Param P { R1 3 2 4 } { R2 7 5 10 }

vsrc vdd –p vdd –n G –v 1.0

res R1 –p vdd –n A –r @R1

res R2 –p A –n G –r @R2

proc func { X } {

global R1 R2

set R1 $X(0); set R2 $X(1)

dcanal

nodes Y

return [expr pow($Y(A)-0.5,2)]

}

sqp P func

puts [format “optimum at R1=%.3f R2=%.3f” $P(R1) $P(R2)]

Create parameters
that will be
optimized

Create a simple
parameterized circuit

Create procedure to
simulate and return
objective function

Call optimizer and
print result

Nassif. NACDM workshop, 2004 30

Conclusions

We need to move simulators beyond analysis
to become “design” tools.
Traditional simulator architectures make this
difficult and inefficient in developer time.
The use of extension languages and careful
thought to the level of the EL/simulator
interface can improve simulator flexibility.
The integration of sampling, optimization, and
other analysis algorithms into the mix will
result in an efficient problem solving platform
for design applications.

Nassif. NACDM workshop, 2004 31

Questions?

